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A criterion for the height of the anisotropy barrier ∆ ) |D|S 2 in
single-molecule magnets, and therefore the blocking temperature
TB ∝ ∆, is presented. In particular, it is found that the anisotropy
barrier does not increase with S as S 2 but as S 0. Consequences
concerning the strategies to enhance ∆ or TB, respectively, are
discussed.

Single-molecule magnets (SMMs), such as the mole-
cule [Mn12O12(CH3COO)16(H2O)4]‚2CH3COOH‚4H2O (Mn12-
acetate), have attracted enormous attention recently.1 At low
temperatures, below a blocking temperatureTB, they exhibit
slow relaxation of the magnetization, such that each molecule
may function as a data-storage unit. However, as yet,TB does
not exceed a few Kelvin, which is too low for applications,
and synthesis of new SMMs with largerTB is an important
goal in the area of molecular magnetism. It had been
observed earlier thatTB is related to the presence of an
anisotropy barrier∆ (TB ∝ ∆), which, in turn, is governed
by the molecular ground-state spinSand easy-axis anisotropy
parameterD, ∆ ) |D|S2.2 This gave rise to the “golden rule”
for enhancingTB: increase|D| and increaseS. Ideally both
|D| and S should simultaneously be controlled, which
however is obviously extremely difficult. Current synthetic
efforts may by and large be characterized so as to aim at
controlling either|D| or S (and to hope for the best for the
other parameter). IncreasingSappears as particularly promis-
ing, considering its expected quadratic influence on∆ or
TB, respectively. In this Communication, a criterion for the
height of the anisotropy barrier∆ is developed, which implies
that enhancingSis not as efficient as suggested by the golden
rule.

The discussion is based on the well-known formula3

whereD is the zero-field-splitting (ZFS) tensor in the ground-
state spin multiplet (with spinS), i numbers theN metal
centers in the cluster, thedi values are projection coefficients,
andDi is the local ZFS tensor on sitei. Some comments are
appropriate:

(i) Equation 1 is derived in the strong-exchange limit for
a spin cluster described by the microscopic spin Hamiltonian

which consists of the Heisenberg exchange interactions as
the dominant term, the local ZFS, and further terms such as
dipole-dipole interactions (which are collected inĤ′).3 For
the applicability of eq 1, the total spinS should be a good
quantum number. However, even if mixing between spin
multiplets (S mixing)4,5 is important, eq 1 is still a good
starting point becauseSmixing does not affect the magnitude
of D much (but crucially affects the value of higher-order
parameters, such asB4

0, B4
4, etc.).5 Hence, for the present

purpose, it is sufficient thatS is “almost” a good quantum
number. This is true for almost all SMMs. However, it is
clearly stated that the results below do not apply if the
anisotropy is so strong that a perturbative treatment breaks
down, e.g., for high-spin cobalt(II) or lanthanide ions (writing
∆ ) |D|S2 in these cases is then ill-defined anyhow, and the
golden rule has to be replaced by something else).

(ii) In general, also dipole-dipole interactions contribute
to D.2 They have been disregarded in eq 1 because the local
ZFS is usually the dominant contribution to the magnetic
anisotropy, especially in SMMs. Also, their effect is similar
to that of the local ZFS and may be considered to be included
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effectively in the tensorsDi. Moreover, and most importantly,
ignoring dipole-dipole interactions does not alter the
conclusions of this work (see also the Supporting Informa-
tion).

(iii) Equation 1 is a tensorial relationship; i.e., both the
magnitude and orientation of the local ZFS tensorsDi are
relevant in determiningD. However, this work is interested
in exploring the role ofS. It is the exchange couplings in
the cluster that determine the nature of the ground-state spin
multiplet, and therefore the value ofS. However, with the
ground state, also the values ofdi in eq 1 are determined.
Hence,Sand thedi values are linked through the Heisenberg
interactions, and exploring the role ofS also requires
consideration of the behavior of thedi values. The tensor
property of Di (and D) does not enter into this game
(controlling Di is, so to say, the part of the strategy to
“increase|D|”, which is not considered here). Hence, symbols
|D| and |Di| are introduced, without a further precise
definition (their meaning will always be obvious in the actual
cases). Accordingly, eq 1 is exploited as|D| ) ∑idi|Di|.

The discussion is started by first considering a spin cluster
with the ferromagnetic spin multiplet as the ground state,
i.e., for which S assumes the maximal valueSmax ) ∑iSi.
The state of this spin multiplet with magnetic quantum
numberM ) S is the product state|F〉 ) |Mi ) Si, ∀i〉 with
all spins “up”. The projection coefficientsdi can be calculated
through the relations

with |ψ〉 ) |F〉; the other symbols have the expected meaning
(for further details on eq 3, see the Supporting Information).
One obtains3

Equation 4 already indicates what will become the main
conclusion of this work: The projection coefficients, and
therefore|D|, scale withS as S-2, which compensates for
theS2 factor in∆ ) |D|S2, such that the anisotropy barrier
∆ is, in fact, by and largeindependentof S. This is a very
robust conclusion; it is traced back to the fact that the matrix
elements on the left- and right-hand sides of eq 3 are on the
order ofSi

2 andS2, respectively.
Next, the general case of a cluster with a ground-state

multiplet with S e Smax is considered. TheM ) S state of
this multiplet shall be written as|Ψ〉 ) ∑γcγ|γ〉, with the
product states|γ〉 ) |M1M2...MN〉. The di values may be
calculated again with eq 3, which requires evaluation of
〈Ψ|Ŝi,z

2|Ψ〉. Because the action ofŜi,z
2 is equal for all states

|γ〉 with equal values ofMi (these states are denoted as|âMi〉
and indexed byâ), it is useful to split the sum overγ into
a sum overMi andâ, i.e., to write|Ψ〉 ) ∑Mi∑âcâMi|âMi〉.
This yields

with cMi
2 ) ∑âcâMi

2. The largest possible value of〈Ψ|Ŝi,z
2|Ψ〉

is then found by maximizing eq 5 under the constraints
∑MicMi

2 ) 1 and 0e cMi
2 e 1. It is easy to confirm that

〈Ψ|Ŝi,z
2|Ψ〉 e Si

2, i.e., that the maximum value coincides with
that of the ferromagnetic state. Similarly, the smallest value
is found as1/4 e 〈Ψ|Ŝi,z

2|Ψ〉 for half-integerSi and 0 e
〈Ψ|Ŝi,z

2|Ψ〉 for integerSi. These findings establish lower and
upper bounds for〈Ψ|3Ŝi,z

2 - Si(Si + 1)|Ψ〉 ) diS(2S - 1),
which are listed in Table 1. Inspection of this table further
reveals that one may sum up the findings as

It is convenient to define a “local anisotropy barrier” of
the ith metal center via∆i ) |Di|Si

2 (in the following,Si >
1 will be assumed, the extension of the considerations toSi

) 1 is straightforward; see also the Supporting Information).
For a cluster with a ferromagnetic spin ground state, the
energy barrier is given by∆ ) ∆max, with

According to eq 6, this finding is generalized to∆ e ∆max

for a cluster withS e Smax. The fraction in the sum on the
right-hand side of eq 7 is smaller or equal to 1 forS g Si

(this restriction is acceptable, being interested in not too small
S), which allows one to write∆max e ∑i∆i. Putting this all
together, one finally obtains the criterion

Because∆ ) ∆max is obviously reached forS ) Smax, eq
8 seems to clearly support the design rule to “increaseSas
much as possible”. However, although the largest anisotropy
barrier is attained for the ferromagnetic spin multiplet, the
effect of increasingS is not as large as naively expected
because of theS-2 scaling of the projection coefficients, as
mentioned before. In fact,Sdoes not enter eq 8 (for not too
small S, it holds 2- 1/S ≈ 2).

Indeed,∆ may get close to∆max already for moderate
values ofS. An instructive example is the molecule Mn12-
acetate, for whichS ) 10 andSmax ) 22. With exchange
couplings as in ref 6, exact numerical diagonalization yields
the projection coefficientsdMnIII ) 0.0252, and the experi-
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〈ψ|3Ŝi,z
2 - Si(Si + 1)|ψ〉 ) di〈SS|3Ŝz

2 - S(S+ 1)|SS〉 (3)

di )
Si(2Si - 1)

S(2S- 1)
(4)

〈Ψ|Ŝi,z
2|Ψ〉 ) ∑

Mi

cMi

2Mi
2 (5)

Table 1. Minimum and Maximum Values ofdiS(2S - 1) for VariousS

diS(2S- 1) diS(2S- 1)

Si minimum maximum Si minimum maximum

1 -2 1 5/2 -8 10
3/2 -3 3 7/2 -15 21
2 -6 6 8 -72 120

|di| e 2
Si(2Si - 1)

S(2S- 1)
, ∀Si ) 1 (6a)

|di| e
Si(2Si - 1)

S(2S- 1)
, ∀Si > 1 (6b)

∆max) ∑
i)1

N 2 - 1/Si

2 - 1/S
∆i (7)

∆ e ∆maxe∑
i)1

N

∆i (8)
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mentally observed anisotropy barrier is reproduced by|DMnIII|
) 3.3 K or ∆MnIII ) 13.2 K, respectively (the contribution
to the anisotropy from the MnIV ions is assumed to be zero,
i.e., |DMnIV| ) 0).5 Equation 1 then predicts|D| ) 0.665 K
or ∆ ) 66.5 K, respectively. By increasingS to 22, it is
tempting to expect an increase of∆ by a factor of (22/10)2,
promising barrier heights of about 250 K. However, for Mn12-
acetate,∆max ) 81 K. That is, despite a value ofSof “only”
10, Mn12-acetate already reaches 82% of the optimum (of
what is attainable by tuningS without modifying the local
ZFS). The situation is visualized in Figure 1, which presents
the barrier height for the lowest spin multiplet for each value
of S g 8 (for S * 10, they are excited states). The trend is
complicated but shows that a simpleS2 dependence is not
realized, not even approximately. ForS< 10, it seems as if
the barrier height quickly decreases with decreasingS, in a
roughly linear fashion, but this conclusion is premature
because from eq 6 the anisotropy barrier is expected to
become larger again with further decreasingS(for very small
values ofS, the minimum values in Table 1 are approached).7

The example of Mn12-acetate also provides a feeling for
the accuracy of eq 1, or the strong-exchange limit, respec-
tively, for our purposes: With the same parameters as before,
a full numerical diagonalization, which treatsS mixing
exactly, yielded|D| ) 0.653 K,5 which is only 2% smaller
than the value reported for the strong-exchange limit in the
previous paragraph.

Because∆ f ∆max for S f Smax, increasingS will
generally result in an enhancement of∆, and doing so
remains a good idea, but the possible improvement of∆ is
only on the order ofS0, i.e., unity, and not on the order of
S2. On the other hand, eqs 3 and 6 show that the projection
coefficients, in general, vary withSi asSi

2 (this is implicitly
reflected in eq 8 through∆i ) |Di|Si

2). Thus, the criterion
suggests the design rule to “increaseSi” (which is, however,
intuitively obvious and already almost exhausted by MnIII ).

Increasing the numberN of metal centers in the cluster
appears as a simple approach for enhancing|D| and S
simultaneously. Because one might expect both|D| and S
to increase linearly withN, the golden rule seems to suggest
the very promising scaling∆ ∝ N3. However, having seen
that ∆ is basically independent ofS, one has to conclude
the much less favorable scaling∆ ∝ N, which is also obvious
from eq 8, if one reads it as∆ e ∑i∆i. Another tempting
strategy, suggested by the golden rule, is to build a SMM
from two “building blocks”, where one building block is
responsible for providing a large|D| and the other one for
providing a largeS. However,∆ e ∑i∆i clearly shows that
it is best to have every metal ion in the cluster to contribute
as much as possible to the energy barrier.

In conclusion, a rather general criterion for the energy
barrier in SMMs has been found. It shows that the widely
considered design rule to “increaseS” is not as efficient as
suggested by∆ ) |D|S2, i.e., that the increase in∆ is on
the order of unity and notS2. This design rule may be
replaced by “increaseSi”. The criterion further shows that
∆ scales only linearly with the numberN of metal ions. For
obtaining better SMMs, it hence seems most promising to
work on the local ZFS tensorsDi (i.e., to “increase|D|”) or
to work in a limit where the Heisenberg term is not dominant
(i.e., to “break the strong-exchange limit”). It is mentioned
that our conclusion seems to be supported by the experiment
in the sense that the strategy to “increaseS”, despite
impressive achievements in terms of the value ofS,8 has not
yet produced better SMMs, while the strategy to “increase
|D|” has had some significant successes in this regard.9 The
results presented here, of course, do not provide new design
rules for the synthesis of SMMs but clarify the status of some
of them, which should help in directing future synthetic
efforts.
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Figure 1. Height of the anisotropy barrier of the lowest spin multiplets
for each value ofS g 8 in Mn12-acetate (with parameters as discussed in
the text). ForS) 9, the spectrum actually consists of two degenerate lowest-
lying multiplets with identical barrier heights.6
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